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Consideration is given to a model (suitable for description at large times) for analysis of the heat- and mass-
exchange processes of a porous body with two types of pores. Specifically, we are dealing with impregnation
(in a sense, with the process of extraction, its converse). The solution of the problem with the most typical
supplementary conditions is obtained; the kinetic impregnation (withdrawal) function and the density of the
substance flux from the body are found for this problem.
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Introduction. The bidispersion (two-component) model of heat and mass transfer is usually referred to when
the more simple (traditional) one-component model yields a marked disagreement with experiment because of the too
simplified representation of a medium as a homogeneous continuum. In particular, in mass transfer, peculiar volumes
(cavities, pockets, stagnation zones, etc.) whose mass exchange with the environment may differ both quantitatively
(other transfer coefficients) and qualitatively (other physical mechanisms of transfer) appear in a number of media. We
note that, despite the difference in the transfer phenomena, in particular, sediment washing, heat transfer in a hetero-
geneous medium, filtration in bidispersion or cracked-porous media, adsorption, etc., the proposed models have many
common mathematical properties, which enables researchers to use development results obtained in such (related) proc-
esses. Also, this leads to a mutual enrichment of different scientific trends related to two-component models. We can
indicate certain works where the general theoretical issues of bidispersion models have been touched on and specific
processes and limiting versions of two-component models have been investigated [1–6]. Here, to be specific, we will
speak of the extraction (withdrawal) of a substance from a porous material and (or) its impregnation, although the re-
sults presented below are of a more general significance.

Diffusion models of withdrawal of the target component (TC) from a porous medium in extraction have pre-
dominantly been developed at present [7, 8], although here, too, the authors have used certain relations characteristic
of the two-component models of TC withdrawal. In a number of cases, researchers, accepting the presence of the con-
vective component of mass transfer, apply diffusion models to the description of extraction kinetics, replacing the mo-
lecular-diffusion coefficients in them by effective-diffusion coefficients [9, 10]. However, such an approach takes no
account of the actual regularities of the process, since the TC from small pores whose fraction may multiply exceed
the fraction of large pores [9, 10] is withdrawn solely by molecular diffusion.

The features of hydrodynamics and chemical kinetics can frequently be explained with the model of a body
containing different-scale pores (cracked-porous systems) [8].

Formulation of the Problem. We consider a system of channels in a semiinfinite body (Fig. 1). In the half-
space x > 0, there are pores of two kinds: large pores emerging at x = 0 and small pores connected to the large ones.
Let us assume that at the initial instant of time (t = 0), the TC concentration is the same in all pores and is equal to
C0. Then a large pore "opens" and the process of extraction to the region x < 0 begins; in this region, the TC concen-
tration is taken to be zero not only at t = 0 but at all instants of time that follow as well. It is necessary to find the
TC flux in the large pore for x = 0 as a function of time.

Such a formulation of the problem by no means assumes that the channels are straight. Both large and small
pores can be as curved as is wished. The coordinate x is the distance reckoned from the cross section x = 0 along the
large channel, whereas the coordinate y is the distance from the corresponding point of the large channel (beginning
of the small channel) along the small pore.
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Instead of the problem formulated above, it is more convenient to solve the following, mathematically equiva-
lent, problem. Let us assume that at the initial instant of time, the TC is in the region x < 0 and has concentration
C0 and it is absent from the region x > 0. Once the large pore has opened, the process of impregnation begins. By vir-
tue of the linearity of transfer equations and since they involve only the derivatives of concentration with respect to
coordinate and time, the time dependence of the TC flux in the cross section x = 0 will be the same as that for the
process of extraction. The difference is only in the direction of the flux.

In the equations of the process, we allow for the fractions of transport and stagnant channels ε1 and ε2:

ε1 = V1
 ⁄ (V1 + V2) ,     ε2 = V2

 ⁄ (V1 + V2) ,     ε1 + ε2 = 1 . (1)

Let the channels have an arbitrary shape with cross-sectional areas S1 and S2 and lengths l1 and l2. Then we obtain
the expression ε = NS2

 ⁄ (p1l1) for the quantity ε, i.e., for the fraction of the cross-sectional area of small pores at the
boundary with large pores. In this case we have the dependence ϕ = V2

 ⁄ V1 = NS2l2 ⁄ (S1l1) = εp1l2 ⁄ S1 for the ratio of
the pore volumes, which reduces formulas (1) to the form

ε1 = 1 ⁄ (1 + ϕ) ,     ε2 = ϕ ⁄ (1 + ϕ) ,     ϕ = εp1l2
 ⁄ S1 . (2)

The process of TC transfer in a large pore will be described by the system

ε1 
⎛
⎜
⎝

∂
∂t

 − D1 
∂2

∂x
2

⎞
⎟
⎠
 C1 = − q (x, t) , (3)

C1 = C1 (x, t) ,   x � (0, ∞) ,   t � (0, ∞) ,   C1 (0, t) = C0 = const ,   C1 (∞, t) = 0 ,   C1 (x, 0) = 0 . (4)

At least in large pores, the transfer coefficient is not necessarily determined by molecular diffusion.
The term q describing the "outflow" of a substance from large pores to small ones is involved in Eq. (3) in

addition to the ordinary differential terms. The functional relationship between the quantity q and the other parameters
of the problem is generally dependent on the processes of mass transfer in the complete system of interconnected
channels in the porous body and it is unlikely that we can determine this relationship. Therefore, one usually puts for-
ward certain hypotheses of mass transfer in a heterogeneous medium [5, 6, 11]. Determination of the variable q is an
example of the closure problem arising in the physics of heterogeneous media [5, 6, 11]. Here we will formulate the
dependence for q, suitable for description of the process at fairly high values of time.

We write the equation of evolution of the volume-average concentration of the TC in a small pore and the
initial condition to it in the form

ε2∂C2
 ⁄ ∂t = q ,     C2 (x, 0) = 0 . (5)

Fig. 1. Diagram of pores in the semiinfinite body.
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The first relation of (5) has been obtained using integration of the one-dimensional equation of diffusion in a stagnant
channel with respect to the variable y with the impermeability condition for the TC flux at the "bottom" of the pore.

In the vicinity of the channel interface, the diffusion equations cannot be thought of as being one-dimensional.
Adoption of one-dimensionality is a postulated simplification of the problem’s formulation. Such actions are substanti-
ated in certain heterogeneous media with the method of averaging over the ensemble of configurations of the system
where diffusion processes in a continuum (in this case in a large channel in the vicinity of the interface) are much
more rapid than those in a dispersion medium (in this case in small channels in the vicinity of the interface) [5].

The problem will be considered further at fairly high values of time. By the high values of time we mean
time intervals of the process that satisfy the inequality t ≥ O(T2), where T2 = l2

2 ⁄ D2 is the characteristic time of diffu-
sion propagation of the TC in small channels. In this case, for the quantity q in (3) and (5), the expression

q = γ (C1 − C2) (6)

is frequently used. The coefficient γ can be determined, in particular, as the least factor of time in the exponent of the
Fourier expansion of the solution of the mass-transfer problem in a stagnant pore in the case of the impermeability of
the channel "bottom" and with the condition of the first kind at the boundary of contact with a transport pore.
Substituting expression (6) into system (3) and (5) and introducing dimensionless variables

G1 (z, τ) = C1
 ⁄ C0 ,     G2 (z, τ) = C2

 ⁄ C0 ,     τ = t ⁄ T3 ,     z = x ⁄ l3 , (7)

where T3 = γ−1 and l3 = (ε1D1
 ⁄ γ)1 ⁄ 2, we obtain the basic system of mass-transfer equations in the form

ε1 
∂G1

∂τ
 − 

∂2
G1

∂z
2  = G2 − G1 ,     ε2 

∂G2

∂τ
 = G1 − G2 . (8)

Supplementary conditions to Eqs. (8) will be written as follows:

G1 (0, τ) = 1 ,     G1 (∞, τ) < ∞ ,     G1 (z, 0) = G2 (z, 0) = 0 . (9)

Problem (8) and (9) is conveniently solved by the operational method (with respect to the variable τ). Upon
transformations, it has the form

d
2
G1

∗ ⁄ dz
2
 = ε1pG1

∗
 + G2

∗
 − G1

∗
 ,     ε2pG2

∗
 = G1

∗
 − G2

∗
 ,    G1

∗
 (0, p) = 1 ⁄ p ,     G1

∗
 (∞, p) < 0 . (10)

The solution of problem (10) for the function G1
∗(z, p) will be written as follows:

G1
∗
 = 

1

p
 exp 

⎛
⎜
⎝

⎜
⎜
− z √⎯⎯⎯⎯ε1ε2p2 + p

1 + ε2p

⎞
⎟
⎠

⎟
⎟
 , (11)

where we have selected the principal branch for the square root, i.e., in particular, we have √⎯⎯1  = 1. For the quantity
Fs = −∂G1

 ⁄ ∂z⏐z=0, the dimensionless density of the TC flux at the boundary of the porous body, we find, from (11),
the Laplace-transformed value

Fs
∗
 (p) = √⎯⎯⎯⎯1 + ε1ε2p

p (1 + ε2p)
 . (12)

In actual practice, it is difficult to directly measure the instantaneous value of the flux density Fs(τ). It is only the in-

tegral curve Qs(τ) = ∫ 
0

τ

Fs(t)dt that is recorded directly. Here Qs(τ) is the variable (dimensionless) quantity equal to the
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amount of the substance transmitted by a unit area of the boundary x = 0 by the instant of time t. In what follows, for
the sake of brevity (not quite correctly, omitting the last part of the previous sentence) we will call the functions Q(τ)
with different subscripts the amount of the TC. According to (12), we have

Qs
∗
 (p) = 

1

p
 √⎯⎯⎯⎯1 + ε1ε2p

p (1 + ε2p)
 . (13)

To expand the function Qs
∗(p) in a series in powers p−1 ⁄ 2 (for subsequent termwise inversion of the series) we

use the existing formula [12]

1

√⎯⎯⎯⎯⎯⎯⎯⎯1 − 2xt + t2
 = ∑ 

n=0

∞

Pn (x) tn , (14)

where Pn(x) are the Legendre polynomials for calculation of whose values there are convenient formulas [12, 13]. In
particular, P0(x) = 1, P1(x) = x, and P2(x) = (3x2 − 1) ⁄ 2. The Legendre polynomials that follow can be found from the
recurrence formula

(n + 1) Pn+1 (x) − (2n + 1) xPn (x) + nPn−1 (x) = 0 ,     n = 1, 2, ... .

Also, we note that the radius of convergence of the power series in t (14) is equal to unity for ⏐x⏐ ≤ 1 but is
dependent on x for ⏐x⏐ ≥ 1, as is the case in our formulas.

We multiply the numerator and the denominator of dependence (13) by (ε1ε2p + 1)1 ⁄ 2 and next, by introduc-
tion of the auxiliary variables

p = αs ,     α = 
1

ε2√⎯⎯ε1
 ,     ξ = 

1 + ε1

2√⎯⎯ε1
(15)

reduce the expression in the denominator of (13) to a form allowing the use of relation (14). As a result we arrive at
the expression

Qs
∗
 (p) = 

1 + ε1ε2p

p√⎯p
 

1

√⎯⎯⎯⎯⎯⎯⎯⎯1 + 2ξs + s2
 . (16)

Let us split expression (16) into two terms determined by the numerator, allow for dependences (15) and for the
formula Pn(−x) = (−1)nPn(x) (n is the integer), and obtain expansion of (16) in the sought series in powers p−1 ⁄ 2:

Qs
∗
 (p) = ∑ 

n=0

∞

(− 1)n αn+1
Pn (ξ) 

⎛
⎜
⎝

1

p
n+5 ⁄ 2

 + 
ε1ε2

p
n+3 ⁄ 2

⎞
⎟
⎠
 . (17)

Next we use the correspondence of the transform p−n and the inverse transform τn−1 ⁄ Γ(n) (n > 0) [13] and obtain,
from (17), the solution suitable for practical computations at fairly low values of time:

Qs (τ) = R1 (τ) + ε1ε2R2 (τ) , (18)

R1 (τ) = ατ3 ⁄ 2 ∑ 
n=0

∞

Pn (ξ) (− 1)n (ατ)n

Γ ⎛⎜
⎝
n + 

5
2
⎞
⎟
⎠

 ;     R2 (τ) = ατ1 ⁄ 2 ∑ 
n=0

∞

Pn (ξ) (− 1)n (ατ)n

Γ ⎛⎜
⎝
n + 

3
2
⎞
⎟
⎠

 . (19)
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The series (19) have an infinite radius of convergence, which can be checked using the asymptotic formulas
of gamma-function theory and the Legendre  polynomials [12, 13]. A small number of their terms is necessary for cal-
culating time values of practical significance for ξ = O(1) (in our case ξ ≥ 1). All the gamma functions involved in
the series (19) can simply be expressed by factorials, etc. [12, 13]. The first term in the sum of (19) for R2(τ) at n = 0 is
the most substantial. This term corresponds to diffusion impregnation (without small channels). The physical meaning
of the term is the absence of the influence of internal pores on the process at small times (it is necessary to pass to
dimensional variables). The second term and the terms that follow give corrections to the first term; they are related
to allowance for the TC withdrawal from internal channels. Also, it is noteworthy that upon simple (necessary) mod-
ernization, the expansion (17) enables us to write the solution of the problem on determination of the TC-flux density
at the boundary of the region for a prescribed boundary function of the general form in terms of the fractional deriva-
tives of this function.

At large times (t >> T3), it is convenient to refer, for calculations, to the asymptotic (when t → ∞) repre-
sentation of the solution. We can obtain it, expanding expression (16) in a Taylor series in powers p1 ⁄ 2 and inverting
subsequently the resulting expression termwise. In so doing, we use the formula of correspondence of the transform
p−n and the inverse transform τn−1 ⁄ Γ(n) of the Laplace transformation for n < 0. These formal calculations lead to the
correct asymptotic expansion, since the algorithm of its search can be brought to the conditions of the corresponding
theorems of operational calculus and asymptotic expansions [13, 14]. In fact, it is necessary to find asymptotic expan-
sions for the functions R1(τ) and R2(τ). The above calculations yield (τ → ∞)

R1 (τ) = − 
√⎯⎯τ
π

 ∑ 
n=0

∞

Pn (ξ) 

Γ ⎛⎜
⎝
n − 

1
2
⎞
⎟
⎠

(ατ)n
 ,     R2 (τ) = 

1

π√⎯⎯τ
 ∑ 
n=0

∞

Pn (ξ) 

Γ ⎛⎜
⎝
n + 

1
2
⎞
⎟
⎠

(ατ)n
 .

(20)

Formulas (19) and (20) show that ατ, not τ, is a more natural dimensionless time in this problem.
To find the distribution of the substance in transport and stagnant pores separately first we integrate the first

equation of (8) with account for the second term with respect to z between the limits (0, ∞) and then the resulting
expression with respect to τ between the limits (0, τ). As a result we find

Qs (τ) = Q1 (τ) + Q2 (τ) ,     Q1 (τ) = ε1I1 (τ) ,     Q2 (τ) = ε2I2 (τ) , (21)

where Ij(τ) = ∫ 
0

∞

Gj(z, τ)dz (j = 1 and 2), in particular, I2(τ) = R1(τ). Allowing for formula (11) and for the previous

calculations in deriving relations (18) and (19), we find, for Q1(τ) and Q2(τ), the dependences

Q1 (τ) = ε1R1 (τ) + ε1ε2R2 (τ) ,     Q2 (τ) = ε2R1 (τ) . (22)

Fig. 2. Amount of the TC in the porous body: 1) in the transport channel;
2) in lateral (small) pores; 3) in the total pore volume; 4) in the case of "dif-
fusion" impregnation.
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Expressions (18)–(20) and (22) are quite sufficient to completely describe the kinetic impregnation curve
throughout the time range of practical interest. It is noteworthy that we can infer from formulas (22), (18), and (20)
that for fairly high values of time, when the first term of the expansion of (20) for the function R1(τ) has a dominant
role, impregnation occurs in the same manner as that in the diffusion version. The total volume of transport and stag-
nant pores participates in the process, which is in agreement with the result of [15]. The functions Q1(τ), Q2(τ), and
Qs(τ) for ε1 = ε2 = 0.5 are plotted in Fig. 2 (curves 1, 2, and 3 respectively). For the sake of comparison this figure
gives curve 4 corresponding to the diffusion impregnation regime.

Allowance for the Finite Length of Transport Pores. Let us assume that a large pore has a length l1. At
the boundary x = l1, we must have the condition

∂C1
 ⁄ ∂x = 0   at   x = l1 , (23)

which physically means that the substance does not enter via the cross section x = l1. In this case we take l1 as the
characteristic length and introduce dimensionless variables and parameters

C1,2 = 1 − U1,2 ,   τ = D1t ⁄ (l1
2ε1) ,   z = x ⁄ l1 ,   n = γl1

2 ⁄ D1 ,   ϕ = ε2
 ⁄ ε1 . (24)

Equations (3), (5), and (6) in the variables (24) will be written as follows:

∂U1

∂τ
 = 

∂2
U1

∂z
2  + n (U2 − U1) ,     ϕ 

∂U2

∂τ
 = n (U1 − U2) . (25)

It is noteworthy that the relationship between the dimensionless concentrations C1,2 and U1,2 (normalized to C0)
corresponds to the passage from the impregnation problem to the extraction problem. Supplementary conditions to
system (25) will be written in the form

∂U1
 ⁄ ∂z = 0   at   z = 1 ,   U1⏐z=0 = 0 ,   Uj⏐τ=0 = 1 ,   j = 1, 2 . (26)

We will seek the solution of problem (25) and (26) in the form of Fourier series

Ui (τ, z) = ∑ 
k=0

∞

ϑi
k
 (τ) sin (λkz) ,   i = 1, 2 , (27)

where λk = π(1 ⁄ 2 + k), k = 0, 1, 2, ... . Conditions (26) in the variable z for the function U1 are fulfilled. Substituting
expressions (27) into system (25) and using the completeness of the system of functions sin (zλk) in the interval
(0, 1), we obtain equations for the functions ϑi

k :

dϑ1
k

dτ
 + λk

2ϑ1
k
 = n (ϑ2

k
 − ϑ1

k) ,     ϕ 
dϑ2

k

dτ
 = n (ϑ1

k
 − ϑ2

k) . (28)

The initial conditions for this system are determined from a comparison of formulas (27) for τ = 0 and initial
conditions (26) and, by virtue of the orthogonality of the functions sin (zλk) in the interval (0, 1), have the form

 ϑj
k
 (0) = 2 ⁄ λk ,     j = 1, 2 . (29)

The solution of system (28) with conditions (29) is represented in the form

ϑ1
k
 (τ) = 

2

λk (pk
+
 − pk

−)
 
⎡
⎢
⎣

⎢
⎢

⎛
⎜
⎝
pk
+
 + 

n
ε2

⎞
⎟
⎠
 exp (pk

+τ) − 
⎛
⎜
⎝
pk
−
 + 

n
ε2

⎞
⎟
⎠
 exp (pk

−τ)
⎤
⎥
⎦

⎥
⎥
 ,
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ϑ2
k
 (τ) = 

2

λk (pk
+
 − pk

−)
 
⎡
⎢
⎣

⎢
⎢

⎛
⎜
⎝
pk
+
 + 

n
ε2

 + λk
2⎞
⎟
⎠
 exp (pk

+τ) − 
⎛
⎜
⎝
pk
−
 + 

n
ε2

 + λk
2⎞
⎟
⎠
 exp (pk

−τ)
⎤
⎥
⎦

⎥
⎥
 ; (30)

pk
�

 = (− n ⁄ ε1 − ϕλk
2
 � √⎯⎯⎯Ek) ⁄ (2ϕ) ,     Ek = (n ⁄ ε1 + ϕλk

2)2
 − 4ϕnλk

2
 = (n ⁄ ε1 − ϕλk

2)2
 + 4ϕ2

nλk
2
 . (31)

From the two expressions for the function Ek, it is seen that Ek is more than 0; furthermore, the absolute
value of √⎯⎯⎯Ek  is less than n ⁄ ε1 + ϕλk

2 and consequently pk
� is always less than 0, i.e., the solution of problem (25) and

(26) will decrease with time.
We find the amount of the TC (accurate to the factor) in the transport and stagnant channels, integrating de-

pendences (27) with respect to z between the limits (0, 1). As a result we obtain

Qi (τ) = ∫ 
0

1

Ui (τ, z) dz = ∑ 
k=0

∞

ϑi
k
 (τ) ⁄ λk ,     i = 1, 2 . (32)

Only one term "survives" in formulas (32), when the values of time are fairly high. We see that the asymptotic behav-
ior of the withdrawn-TC volume is determined by the most slowly decreasing exponent in dependence (30) for k = 0:

Q1 (τ) = 

2 
⎛
⎜
⎝
p0
+
 + 

n
ε2

⎞
⎟
⎠
 exp (p0

+τ)

λ0
2
 (p0

+
 − p0

−)
 ,     Q2 (τ) = 

2 
⎛
⎜
⎝
p0
+
 + 

n
ε2

 + λ0
2⎞
⎟
⎠
 exp (p0

+τ)

λ0
2
 (p0

+
 − p0

−)
 . (33)

Determination of the Density of the TC Flux at the Boundary of a Porous Sediment for a Semiinfinite
Body. This quantity is most simply determined after the differentiation of formula (18), i.e., the series (19) with re-
spect to time, which is legitimate by virtue of the convergence of these power series. We have

Fs (τ) = R2 (τ) + ε1ε2R3 (τ) , (34)

R3 (τ) = 
α

τ1 ⁄ 2
 ∑ 
n=0

∞

Pn (ξ) 
(− 1)n (ατ)n

Γ ⎛⎜
⎝
n + 

1
2
⎞
⎟
⎠

 � 
− 1

πτ3 ⁄ 2
 ∑ 
n=0

∞

Pn (ξ) 

Γ ⎛⎜
⎝
n + 

3
2
⎞
⎟
⎠

(ατ)n
 , (35)

where the last series is asymptotic when τ → ∞, which is found analogously to formulas (20). Thus, we have obtained
that at large times, we can use, for the function Fs(τ), the asymptotic expansion

Fs (τ) = 
1

π√⎯⎯τ
 ∑ 
n=0

∞

Pn (ξ) 

Γ ⎛⎜
⎝
n + 

1
2
⎞
⎟
⎠

(ατ)n
 − 

ε1ε2

πτ√⎯⎯τ
 ∑ 
n=0

∞

Pn (ξ) 

Γ ⎛⎜
⎝
n + 

3
2
⎞
⎟
⎠

(ατ)n
 . (36)

It is noteworthy that the introduced functions Rj(τ) (j = 1, 2, and 3) are related by R2(τ) = R1′ (τ) and R3(τ) = R2′ (τ).
The minus sign before the asymptotic formula (35) must not confuse anyone, since the function R3(τ) takes on first
positive values (for ατ � (0, 0.8378) and then negative ones (for ατ > 0.8378). Therefore, it is clear that the
asymptotic formula (35) can describe only the negative part of the function R3(τ) and, what is more, from a certain
value of the argument.

The problem on determination of the flux density at the boundary of the region for the system of equations
of the form (8) has been considered in [16, 17] with operator product expansions using fractional derivatives. In these
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works, it was erroneously derived that the variable G1(z, τ) (in our notation) at the boundary of the region z = 0 un-
dergoes an abrupt change

G1 (− 0, τ) = 1 ,     G1 (+ 0, τ) = 1 − exp (− τ ⁄ ε2) , (37)

which has led to a distorted picture of mass exchange. In [16, 17], it has been assumed that condition (9) which is
written in (37) (and in [16, 17]) at the point z = −0 (displaced from zero to the left by an infinitesimal quantity) is
fulfilled. In the present work, we take into account that here the value of the parameter γ differs ε2 times from that
in [16]. In [16], a detailed solution has been given only for the partial version ε1 = ε2 = 1 ⁄ 2. We obtain the solution
of the problem of [16] in the general case for  any value of ε1.

With the law of variation in the TC at entry into the porous body according to dependence (37), we replace
the formula for the flux density (12) by the following one:

Fs
∗
 (p) = 

⎛
⎜
⎝

1
p

 + ε1ε2
⎞
⎟
⎠

1 ⁄ 2

(1 + ε2p)3
 ⁄ 2

 .

(38)

To obtain an expansion analogous to [16, 17] we use the theorem of parametric shift of the Laplace transformation
[13, 14] p → p + 1 ⁄ ε2. In inverting the function of the new parameter, the result, according to [13, 14], should be
multiplied by exp (−τ ⁄ ε2). Instead of (38), we will invert the expression

fs
∗
 (p) = 

1

p√⎯⎯⎯pε2
 √⎯⎯⎯ε1p + 1

ε2p − 1
 . (39)

Introducing the variables p = is ⁄ √⎯⎯⎯⎯ε1ε2  and ξ = (ε2 − ε1) ⁄ 2√⎯⎯⎯⎯ε1ε2, we obtain

√⎯⎯⎯ε1p + 1

ε2p − 1
 = 

s√⎯⎯⎯⎯⎯ε1
 ⁄ ε2  − i

√⎯⎯⎯⎯⎯⎯⎯⎯1 − 2iξs + s2
 , (40)

which enables us to use relation (14). Passing from the variable s to p, we apply formula (40) to expansion of (39)
in negative powers of p. As a result we have

 fs
∗
 (p) = 

1

ε2

 
⎛
⎜
⎝
√⎯⎯ε1  + 

1

p√⎯⎯ε1

⎞
⎟
⎠
 ∑ 
n=0

∞
i
n
Pn (iξ)

(ε1ε2)
n ⁄ 2

 
1

p
n+3 ⁄ 2

 . (41)

Let us introduce the notation Φk(ξ) = ikPk(iξ). We emphasize that Φk(ξ) is the real polynomial for the real argument.
Numerous [12, 13] formulas for Legendre polynomials can be used for derivation of the corresponding formulas for
the function Φk(ξ). For example, it is easy to obtain the relation

Φn (x) = 
(− 1)n

π
 ∫ 
0

π

[x + cos ϕ√⎯⎯⎯⎯1 + x2]n
 dϕ . (42)

Termwise inversion of the series (41) yields the following expression for the flux density Fs:

Fs (τ) = 
exp (− τ ⁄ ε2) √⎯⎯τ

ε2

 

⎧

⎨

⎩

⎪

⎪
  ∑ 

n=0

∞

 
τnΦn (ξ)

(ε1ε2)
n ⁄ 2

 
⎡

⎢

⎣

⎢

⎢

√⎯⎯ε1

Γ ⎛⎜
⎝
n + 

3
2
⎞
⎟
⎠

 + 
τ

Γ ⎛⎜
⎝
n + 

5
2
⎞
⎟
⎠
 √⎯⎯ε1

⎤
⎥
⎦

⎥
⎥
 

⎫

⎬

⎭

⎪

⎪
 . (43)
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When x is real, formula (42) enables us to roughly evaluate the function Φn(x):

⏐Φn (x)⏐ ≤ (⏐x⏐ + √⎯⎯⎯⎯1 + x2)n
 ,

this evaluation is sufficient to establish the absolute convergence of the series (43) with allowance for the asymptotic
behavior of the gamma function for high values of the argument [12, 13].

The principal term determining the inertial stage of impregnation of the sediment has the form

Fs (τ) = 
2√⎯⎯⎯τε1
ε2√⎯⎯π

 ,     τ → 0 , (44)

as follows from dependence (43). This dependence is caused by the law of variation in the TC concentration at the
boundary, which is linear in time for τ → 0 and has been used in the formulation of the problem, not by the mass
exchange between the zones (in the opinion of Babenko et al. [16]). Dependence (44) "works" at such small times that
mass exchange between the zones has yet to manifest itself.

To obtain the formula describing the behavior of the heat flux at large times we can use dependence (38), ex-
pand it is positive powers of the parameter p, and then invert the resulting expression. Inversion of the first three
terms yields a trinomial asymptotic expansion of the function Fs:

Fs (τ) = 
1

√⎯⎯⎯πτ
 
⎡
⎢
⎣

⎢
⎢
1 + 

ε2 (3 − ε1)

4τ
 + 

3ε2
2
 (15 − ε1

2
 − 6ε1)

32τ2  + O 
⎛
⎜
⎝

1

τ3

⎞
⎟
⎠

⎤
⎥
⎦

⎥
⎥
 ,     τ → ∞ . (45)

In the problem considered in [16], we have ε1 = ε2 = 1 ⁄ 2, with ξ being equal to zero. Using the existing
[12] formula for Legendre polynomials for the zero argument, we obtain Φ2n+1(0) = 0 and Φ2n(0) = (−1)nP2n(0) =
Γ(n + 1 ⁄ 2) ⁄ [Γ(1 ⁄ 2)n!], n = 0, 1, 2, ... . Expression (43) is simplified and takes the form

Fs (τ) = √⎯⎯2τ
π

 exp (− 2τ) 

⎧

⎨

⎩

⎪
⎪

⎪
⎪
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2
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2n + 
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⎠

 
(2τ)2n

n!
 + 2τ ∑ 
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2
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2n + 
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⎟
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(2τ)2n
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⎫

⎬

⎭

⎪
⎪

⎪
⎪

 . (46)

The first (in the power of τ) term of dependence (46) (in the braces with allowance for the factor τ1 ⁄ 2) is coincident
with that from [16], whereas the second term (of the order of τ3 ⁄ 2) in [16] is zero, unlike that given in the present
work.

Certain functions describing the behavior of the TC-flux density are given as an illustration in Fig. 3. In par-
ticular, this figure plots the function Fs(τ); the plot is determined by relation (34) for ε1 = ε2 = 1 ⁄ 2 (curve 1). The
curves for other values of the parameter ε1 are close to curve 1 shown in Fig. 3; therefore, we do not give them.

Fig. 3. Density of the TC flux at the boundary of the porous body: 1) formula
(34) for ε1 = 1 ⁄ 2; 2) formula (46).
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The function Fs(τ) plotted from formula (46) is shown in Fig. 3 (curve 2). It is seen that curves 1 and 2 ap-
proach each other with increase in the time, as they must, since both functions presented in Fig. 3 tend to zero and
have the same (monomial) behavior asymptotic for τ → ∞. Formula (37) may be considered as a particular case of a
relaxation relation, bringing the function in the boundary condition of the first kind for z = 0 to a constant (unit)
value. This is the reason for the proximity of these curves at large times. It should be expected that if a limiting value
of unity in formula (37) were reached faster, more precisely, if a larger constant were present in it instead of ε2, the
maximum of the function Fs(τ) = 0.7723 (curve 2) would shift from the point τ = 0.5998 closer to the origin of co-
ordinates, and the maximum itself would be larger, i.e., the new curve 2 on a larger τ interval would fit curve 1 more
tightly. At the same time, a behavior characteristic of the boundary layer would be observed in the vicinity of the
point τ = 0.

To obtain expansions representing the solution of the functions in power series of the time τ, one first finds
series expansions in the Laplace transform space, i.e., in powers of the parameter p. Thereafter, the resulting series is
inverted termwise. When expressions containing square roots (of the (13) and (38) type) are present, series of formulas
of the binomial type are to be multiplied. This is not always convenient. Here we seek to express the expansion co-
efficients by certain polynomials (in this case by Legendre polynomials). Numerous convenient formulas are usually
available for calculation of the values of such polynomials. The above procedure can be performed for relation (38) if
we use, instead of (14), the following formula:

 
az

(1 + az)√⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯(1 + az) (1 + bz)
 = 

b − a
2√⎯⎯⎯ab

 ∑ 
n=1

∞

(− 1)n Pn′ (ξ) z
n
 (ab)n

 ⁄ 2 − ∑ 
n=1

∞

(− 1)n nPn (ξ) zn
 (ab)n

 ⁄ 2 ,   ξ = 
a + b
2√⎯⎯⎯ab

 . (47)

The derivative of the Legendre polynomial involved in the first series of (47) can be expressed by Legendre
polynomials with other numbers, e.g., using the well-known recurrence relation

(1 − z
2) Pn

′ (z) = nPn−1 (z) − nzPn (z) ,     n = 1, 2, ... ,

appropriate when z ≠ 1, which is sufficient for our purposes. This follows from the fact that we do not need the value
of dPn

 ⁄ dz⏐z=1 = n(n + 1) ⁄ 2 for z = 1, since we have b = a (ξ = 1) and the first series (containing the derivatives of
the Legendre polynomials) disappears. However, the polynomials dPn

 ⁄ dz can be considered as independent objects
satisfying the recurrence relation

nPn+1′  (z) − (2n + 1) zPn
′ (z) + (n + 1) Pn−1′  (z) = 0 ,      n = 1, 2, ... ,

and a number of other dependences related to Legendre polynomials.
Comparison to a Diffusion Regime. As is seen from system (8), the diffusion version of impregnation will

be obtained if we set ε2 = 0 (ε1 = 1) in the system. System (8) will be reduced to the diffusion equation for the func-
tion G1(z, τ) and to the relation G2(z, τ) = G1(z, τ). Thus, for the formula of "diffusion impregnation" to be obtained,
it is sufficient to pass to the limit ε2 → 0 in the found solution (18), which also leads to the limiting equalities
ε1 → 1 and α → ∞. As a result, expression (18) with account for the asymptotic formulas (20) yields the "diffusion"
relation Qs(τ) = 2(τ ⁄ π)1 ⁄ 2. This dependence corresponds to curve 4 in Fig. 2. From physical considerations, it is clear
that the presence of internal pores offers additional possibilities for the TC to penetrate into a porous body compared
to the diffusion version, creating the "rarefaction" of the concentration at entry into the body and thereby increasing
the substance flux. Here we are dealing with the specific boundary condition (9) at entry into the porous body. The
general case where the substance can both enter the sediment and come out from it, which is caused by the external
situation (boundary condition for z = 0, which is not necessarily of the first kind), is not considered now. The corre-
sponding more complex problem for a general-type boundary condition of the first kind will be discussed below.

Also, the proposed model must reflect the fact that a greater amount of the TC penetrates into the sample
with internal pores over a given period τ > 0 than the amount in the case of their absence. This is not evident from
the obtained formulas (18)–(22). A comparison of the plots (curves 3 and 4 in Fig. 2) of the corresponding depend-
ences can be an illustrative (but not mathematical) proof of the increase in the amount of the TC in the body. We
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prove this property mathematically as follows. We will rely on formula (12) for the TC-flux density at the boundary
of the region and will take into account that this formula must be divided by √⎯⎯ε1  in comparing it to the corresponding
formula of the diffusion regime because of the selected scale of variables (see (7)). We have

Fs
∗
 (p) = √⎯⎯⎯⎯1 + ε1ε2p

ε1p (1 + ε2p)
 . (48)

Next, we use the Riemann–Mellin formula. We make two cuts in the plane p along the negative part of the real axis
to separate the single-valued branch of the function Fsup∗(p) (see Fig. 4). Using the Riemann–Mellin formula, the Jor-
dan lemma [13, 14], the property of regularity of the function Fsup∗(p) in the p plane with the noted cut, the Cauchy
theorem, and an analysis of the behavior of the function Fsup∗(p) in the vicinity of the branching points p = 0, p =
−a, and p = −b, we reduce the integral in the Riemann–Mellin formula along the straight line L (Re p = const > 0)
to the sum of two integrals along the edges of the cut. For this purpose we must pass to the limit R → ∞ and let the
radii of the circles bypassing the branching points p = 0, p = −a, and p = −b tend to zero. Finally, we obtain

Fs (τ, b) = 
1
π

 ∫ 
0

a
exp (− rτ)

√⎯⎯r
 √⎯⎯b − r

a − r
 dr + 

1
π

 ∫ 
b

∞
exp (− rτ)

√⎯⎯r
 √⎯⎯r − b

r − a
 dr , (49)

where a = 1 ⁄ ε2 and b = a ⁄ ε1 (b > a). In the following discussion, in comparing our  solution and the diffusion regime,
we will assume the parameters ε1 and ε2 to be free (which does not affect the result), i.e., to be not related by the
dependence ε1 + ε2 = 1. This results in the independence of the parameters a and b (b ≥ a).

From formula (49), it is seen that for a = b the function Fs(τ, b) is represented by one integral taken between
the limits (0, ∞) and whose value is expressed by the function 1 ⁄ (πτ)1 ⁄ 2 coincident with the dependence for the flux
density of the diffusion version of impregnation. For the derivative of the function Fs(τ, b) with respect to the parame-
ter b, we have

π 
∂Fs

∂b
 = ∫ 

0

a
exp (− rτ) dr

√⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯r (b − r) (a − r)
 − ∫ 

b

∞
exp (− rτ) dr

√⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯r (r − b) (r − a)
 . (50)

When τ = 0 it is easily checked that the value of this derivative is equal to zero (the integrals in formula (50)
are equal). When τ > 0, according to the mean-value theorem, we have for the integrals

π 
∂Fs

∂b
 = [exp (− r1τ) − exp (− r2τ)] ∫ 

0

a
dr

√⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯r (b − r) (a − r)
 , (51)

Fig. 4. Integration contour.

261



where r1 � (0, a) and r2 � (b, ∞), because of which (the exponential function exp (−rτ) monotonically decreases for
r > 0) the value of the derivative ∂Fs

 ⁄ ∂b is positive. Therefore, when b > a, we obtain Fs(τ) > 1 ⁄ (πτ)1 ⁄ 2 (τ > 0). This
means that the TC-flux density in our problem exceeds the flux density in the diffusion model, which is the required
result. After termwise integration between the limits (0, τ), it follows that Qs(τ) > 2(τ ⁄ π)1 ⁄ 2, i.e., the total amount of
the TC in the porous body in the model in question exceeds the corresponding quantity in the diffusion case.

With allowance for the obtained results the solution of the general problem on determination of the amount
of the TC that has entered the porous body with the boundary condition G(0, τ) = f(τ) ≥ 0 (the function f(τ) cannot
be negative, since it expresses the concentration of the substance) can be represented as the integral of convolution of
the functions

Qs (τ) = ∫ 
0

τ

f (τ − ξ) Fs (ξ) dξ . (52)

The integral of (52) for low τ values is easily calculated numerically, e.g., using the trapezoidal rule. The singularity
of the function Fs(τ) for τ → 0 is easily overcome in calculating the integral in (52) after the replacement of the
integration variable ξ = x2. Also, the expansion of the function Fs(τ), asymptotic for τ → ∞ — (36) — can turn out
to be useful.

We note that the total growth in the TC in this model always exceeds that in the diffusion version. This is
quite evident from formula (52), when we apply to it the same procedure as that in the above proof of the inequality
of the values of the flux densities in the noted models. The nonnegative character of the function f(τ) ≥ 0 under the
integration sign in expression (52) is of importance.

Distribution of the TC in the Semiinfinite Porous Body. The above results are sufficient for practical pur-
poses. However, it is expedient to discuss the TC concentration in the sediment within the framework of this model
to fully understand the process of impregnation (extraction). The solution of problem (8) and (9) can be found by the
Fourier method analogously to the solution of problem (25) and (26) or by passage to the limit l2

 ⁄ l3 → ∞ in (25) and
(26). As a result, we obtain

Gi (τ, z) = 1 − 
2
π

 ∫ 
0

∞

sin (λz) ϑi (λ, τ) dλ
λ

 ,     i = 1, 2 , (53)

ϑ1 (λ, τ) = 
(p+

 + ε2
−1) exp (p+τ ⁄ ε1) − (p−

 + ε2
−1) exp (p−τ ⁄ ε1)

p
+
 − p

−
 ;

ϑ2 (λ, τ) = 
(p+

 + λ2
 + ε2

−1) exp (p+τ ⁄ ε1) − (p−
 + λ2

 + ε2
−1) exp (p−τ ⁄ ε1)

p
+
 − p

−  ;
(54)

E = (ε1
−1

 + ϕλ2)2
 − 4ϕλ2

 = (ε1
−1

 − ϕλ2)2
 + 4ϕ2λ2

 ;   p
�

 = [− ε1
−1

 − ϕλ2
 � E

1 ⁄ 2] ⁄ (2ϕ) .

From the last two relations of (54) for the function E, it is seen that E > 0; furthermore, the absolute value of
E1 ⁄ 2 is less than ϕλ2 + 1 ⁄ ε1 and consequently we always have p− < 0 and p+ ≤ 0. The possibility of p+ vanishing at
the boundary of the integration region (λ = 0) in formulas (53) leads to a change in the asymptotics (for τ → ∞) of
the integral characteristics of the solution from the exponential tendency to unity for the body of a finite dimension
(33) (Gj = 1 − Uj) to an algebraic growth in (22), (20) in the approximation of a semiinfinite body.

For fairly high values of time and finite z values, the asymptotics in the integrals of (53) is determined in the
vicinity of the points λ, where the values of the exponents in the functions ϑj(λ, τ) are maximum. It is easily checked
that the functions p�(λ) are monotonically decreasing and consequently the point λ = 0 is of asymptotic interest. In
the vicinity of this point, we have the expansions
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p
+
 � − ε1λ

2
 + O (λ4) ,     p−

 � 
1
ε2

 + O (λ2) . (55)

Hence it is clear that only the exponent containing p+ should be allowed for in the integrals of (53) in accordance
with the Laplace method [13]. When λ → 0 the functions ϑ1 and ϑ2 in the principal asymptotic approximation are
coincident, which follows from relations (54). Expanding the corresponding functions in the vicinity of the point λ =
0, we obtain

 Gi (z, τ) � 1 − 
2z
π

 ∫ 
0

∞

exp (− λ2τ) dλ = 1 − 
z

√⎯⎯⎯πτ
 ,   τ → ∞ ,   z = O (1) ,   i = 1, 2 . (56)

It follows from dependences (56) that the TC concentrations in both zones change in synchronism at large times
within the framework of this model. Also, it is noteworthy that the law (56) corresponds to the solution (asymptotic
for τ → ∞ and z = O(1)) of the diffusion problem with the same (our) supplementary conditions. Clearly, expression
(56) is appropriate only for a low (compared to unity) value of the second term.

Also, the behavior of the TC concentration for high values of z and τ is of interest. This asymptotics is most
simply found at points moving with a certain velocity v at large times, i.e., at z = vτ (z and τ → ∞ and v = const =
O(1)). In this case it is convenient to use the Riemann–Mellin integral written for the function G1(z, τ):

G1 (z, τ) = 
1

2πi
 ∫ 
L

exp 
⎡
⎢
⎣

⎢
⎢
τ 
⎛
⎜
⎝

⎜
⎜
p − v √⎯⎯⎯ε1ε2p

2
 + p

1 + ε2p
  
⎞
⎟
⎠

⎟
⎟
 
⎤
⎥
⎦

⎥
⎥
 
dp

p
 ,

(57)

which can approximately be found using the saddle-point approximation (method of steepest descents) [13, 18]. To
determine the stationary point p∗ (saddle point) we have, setting the derivative with respect to p in the expression
under the exponent sign �μ(p) = p − v[(p + ε1ε2p2) ⁄ (1 + ε2p)]1 ⁄ 2� equal to zero, the equation

v = 
2√⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯p∗ (1 + ε1ε2p∗) (1 + ε2p∗)

3

1 + 2ε1ε2p∗ + ε1ε2
2
p∗

2  . (58)

Since v is more than 0, we easily note that Eq. (58) has the unique real root p∗, p∗ � (0, ∞). This yields the
stationary point p∗ > 0. The functions v(p∗) are plotted in Fig. 5 (curves 1–3 for the values ε1 = 0.25, 0.5, and 0.75
respectively). Computation of the second derivative of the function μ(p) at the stationary point yields

μ′′ (p∗) = ψ (p∗) = 
v [(1 + 2ε1ε2p∗ + ε1ε2

2
p∗

2)2
 + 4ε2

2
p∗ (1 + ε1ε2p∗)]

4p∗
3 ⁄ 2 (1 + ε1ε2p∗)

3 ⁄ 2 (1 + ε2p∗)
5 ⁄ 2

 , (59)

and the value of the function μ(p∗) itself is equal to

μ (p∗) = 
− p∗ (1 + 2ε2p∗ + ε1ε2

2
p∗

2)
1 + 2ε1ε2p∗ + ε1ε2

2
p∗

2  .
(60)

The functions μ(p∗) and 10 × ψ(p∗) are plotted in Fig. 5 (curves 4–6 for μ(p∗) and 7–9 for 10 × ψ(p∗) for the values
ε1 = 0.25, 0.5, and 0.75 respectively.)

The line of steepest descent intersects the real axis of the plane p at the saddle point p∗ at a right angle.
Therefore, we can use the line L passing through the point p∗ in the Riemann–Mellin integral (57) to construct the
principal term of the asymptotics of the function G1(z, τ). Performing the standard procedure of saddle-point approxi-
mation [13, 18], we arrive at the following asymptotic expression (principal part) for the solution:
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G1 (z, τ) � 
exp [τμ (p∗)]
p∗√⎯⎯⎯⎯⎯⎯⎯⎯⎯2πτψ (p∗)

 ,     τ → ∞ ,     p∗ ≥ O (1) . (61)

For fairly high values of the parameter p∗, we have μ(p∗) � −p∗, ψ(p∗) � 1 ⁄ (2(p∗), and v = z ⁄ τ � 2(p∗ ⁄ ε1)1 ⁄ 2.
Substituting these expressions into (61), we find

G1 (z, τ) � 
2√⎯⎯τ

z√⎯⎯⎯⎯πε1
 exp 

⎛
⎜
⎝
− 

ε1z
2

4τ
⎞
⎟
⎠
 ,     τ → ∞ ,     z >> τ . (62)

Precisely the same expression is obtained when we consider the diffusion problem with our supplementary conditions.
In this case we have

GD (z, τ) = erfc 
⎛
⎜
⎝

z√⎯⎯ε1

2√⎯⎯τ
⎞
⎟
⎠
 ,     erfc (x) = 

2

√⎯⎯π
 ∫ 
x

∞

exp (− t
2) dt ,

where erfc (x) is the supplementary probability integral.
Using formula (10) relating the functions G1

∗ and G2
∗ and the relation Gs = ε1G1 + ε2G2, we obtain, analo-

gously to the derivation of (61), the dependences for the quantities G2 and Gs:

 G2 (z, τ) � 
exp [τμ (p∗)]

p∗ (1 + ε2p∗) √⎯⎯⎯⎯⎯⎯⎯⎯⎯2πτψ (p∗)
 ,   Gs (z, τ) � 

(1 + ε1ε2p∗) exp [τμ (p∗)]
p∗ (1 + ε2p∗) √⎯⎯⎯⎯⎯⎯⎯⎯⎯2πτψ (p∗)

 ,   τ → ∞ ,   p∗ ≥ O (1) . (63)

Solution in the form (61) and (63) is somewhat inconvenient because of dependence (58) unsolved for v =
z ⁄ τ, i.e., it is desirable to have the explicit formula of the form p∗ = p∗(v) instead of (58). If we do this, the asymp-
totic formulas (61) and (63) will explicitly be dependent on z and τ. For practical purposes, we can propose when
ε1 > 0.4 the simple approximate formula

p∗ (v) = 
v

2
 (1 + ε1ε2v

2)
4 (1 + ε2v

2)
 ,

having the asymptotic behavior identical to (58) for both v → ∞ and v → 0.
Conclusions. We have investigated several problems on impregnation of a porous body with two types of TC

pores on the basis of a two-component mass-transfer model suitable for description of the process at fairly large times.
We have analyzed the versions of approximation of a semiinfinite body and a body of a finite length. In the first case,
we have constructed expansions of the solution in power series in dimensionless time, which are suitable for calcula-

Fig. 5. Plots of the functions determining the asymptotic formula (61) for the
values ε1 = 0.25, 0.5, and 0.75.
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tion of the TC flux and the total amount of the TC in the body. The principal terms of the asymptotic representation
of the solution are the power time functions.

In the case of a finite body the functions characterizing the solution are expressed by the series in exponential
functions (decreasing when τ → ∞). In withdrawing the TC from the porous system, the total amount of the TC in this
version exponentially tends to zero for τ → ∞ with determined parameters for the factor of time in the exponent and
the preexponential factor (see dependence (33)). We have obtained the asymptotic formulas determining the TC distri-
bution in the semiinfinite porous body.

NOTATION

a and b, parameters in relation (47); C1 and C2, concentration of the target product in the transport and stag-
nant channels respectively, kg ⁄ m3; C0, value of the concentration at entry into the system (for impregnation), kg ⁄ m3;
D, diffusion coefficient, m2 ⁄ sec; E and p�, auxiliary variables, see (31) and (54); Fs, density of the target-product
flux, kg ⁄ (m2⋅sec); f(z), boundary function in relation (52); G1 and G2, dimensionless concentration of the target prod-
uct in the transport and stagnant channels respectively; I1(τ) and I2(τ), integral characteristics of the process, see (21);
i, imaginary unit; L, straight line of integration in the Riemann–Mellin formula; l1, length of a transport channel, m;
l2, length of a stagnant pore, m; l3, characteristic length scale, m; N, average number of the stagnant channels in con-
tact with one transport channel; n, auxiliary dimensionless variable, see (24); Pn(x), Legendre polynomials of nth order;
p, parameter of the Laplace transformation; p1, perimeter of a transport pore, m; Q, amount of the substance transmit-
ted by the cross section over the period t, kg ⁄ m2; p∗, root of Eq. (58); q, term describing the exchange of the sub-
stance between the principal channel and the secondary channels, kg ⁄ (m3⋅sec); R, radius of the circular arc in Fig. 4;
R1(τ), R2(τ), and R3(τ), auxiliary functions, see (19) and (35); r1 and r2, parameters in formula (51); S1 and S2, cross-
sectional areas of the transport and stagnant channels respectively, m2; s, auxiliary variable replacing p, see (15); T2
and T3, time scales, sec; t, time, sec; U1 and U2, new sought functions, see (24); V1 and V2, volumes of the transport
and stagnant pores in the porous system, m3; v, dimensionless velocity; x, coordinate matched to the principal channel,
m; y, coordinate along the small channel, m; z, dimensionless coordinate; α, auxiliary variable, see (15); Γ(z), gamma
function; γ, constant coefficient of mass exchange between channels of different types, sec−1; ε, fraction of the cross-
sectional area of small pores at the boundary with large ones; ε1 and ε2, volume fractions of the transport and stagna-
tion zones respectively; ϑi

k , functions in Fourier series, see (27); λk, eigenvalues; μ and ψ, functions of p∗, determined
in (59) and (60); ξ, dimensionless parameter, see (15), (40), and (47); τ, dimensionless time; Φk(ξ) = ikPk(iξ); ϕ, aux-
iliary variable, see (2) and (24). Subscripts and superscripts: 1, large pores; 2, small pores; D, diffusion problem; s,
phase interface; *, Laplace-transformed quantities.
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